Asymmetric Quantum Cyclic Codes

نویسنده

  • Salah A. Aly
چکیده

It is recently conjectured that phase-shift errors occur with high probability than qubitflip errors, hence phase-shift errors are more disturbing to quantum information than qubit-flip errors. This leads to construct asymmetric quantum error-correcting codes (AQEC) to protect quantum information over asymmetric channels, PrZ ≥ PrX. In this paper we present two generic methods to derive asymmetric quantum cyclic codes using the generator polynomials and defining sets of classical cyclic codes. Consequently, the methods allow us to construct several families of asymmetric quantum BCH, RS, and RM codes. Finally, the methods are used to construct families of asymmetric subsystem codes. Construction of AQEC (Main Results). The following theorem shows the CSS construction of asymmetric quantum error control codes over Fq. Theorem 1 (CSS AQEC) Let C1 and C2 be two classical codes with parameters [n, k1, d1]q and [n, k2, d2]q respectively, and dx = min { wt(C1\C ⊥ 2 ),wt(C2\C ⊥ 1 ) }

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Asymmetric Quantum and Subsystem Cyclic Codes

It is recently conjectured in quantum information processing that phase-shift errors occur with high probability than qubit-flip errors, hence the former is more disturbing to quantum information than the later one. This leads us to construct asymmetric quantum error controlling codes to protect quantum information over asymmetric channels, PrZ ≥ PrX. In this paper we present two generic method...

متن کامل

Constructions of new families of nonbinary asymmetric quantum BCH codes and subsystem BCH codes

Two code constructions generating new families of good nonbinary asymmetric quantum BCH codes and good nonbinary subsystem BCH codes are presented in this paper. The first one is derived from q-ary Steane’s enlargement of CSS codes applied to nonnarrow-sense BCH codes. The second one is derived from the method of defining sets of classical cyclic codes. The asymmetric quantum BCH codes and subs...

متن کامل

From skew-cyclic codes to asymmetric quantum codes

We introduce an additive but not F4-linear map S from Fn4 to F 4 and exhibit some of its interesting structural properties. If C is a linear [n, k, d]4-code, then S(C) is an additive (2n, 2 , 2d)4-code. If C is an additive cyclic code then S(C) is an additive quasi-cyclic code of index 2. Moreover, if C is a module θ-cyclic code, a recently introduced type of code which will be explained below,...

متن کامل

Skew Generalized Quasi-cyclic Codes

This article discusses skew generalized quasi-cyclic codes over any finite field F with Galois automorphism θ. This is a generalization of quasi-cyclic codes and skew polynomial codes. These codes have an added advantage over quasi-cyclic codes since their lengths do not have to be multiples of the index. After a brief description of the skew polynomial ring F[x; θ], we show that a skew general...

متن کامل

On Quantum and Classical Error Control Codes: Constructions and Applications

It is conjectured that quantum computers are able to solve certain problems more quickly than any deterministic or probabilistic computer. For instance, Shor’s algorithm is able to factor large integers in polynomial time on a quantum computer. A quantum computer exploits the rules of quantum mechanics to speed up computations. However, it is a formidable task to build a quantum computer, since...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009